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The causative agent of cholera, Vibrio cholerae, has been shown to be
autochthonous to riverine, estuarine, and coastal waters along with
its host, the copepod, a significant member of the zooplankton
community. Temperature, salinity, rainfall and plankton have proven
to be important factors in the ecology of V. cholerae, influencing the
transmission of the disease in those regions of the world where the
human population relies on untreated water as a source of drinking
water. In this study, the pattern of cholera outbreaks during 1998–
2006 in Kolkata, India, and Matlab, Bangladesh, and the earth obser-
vation data were analyzed with the objective of developing a pre-
diction model for cholera. Satellite sensors were used to measure
chlorophyll a concentration (CHL) and sea surface temperature (SST).
In addition, rainfall data were obtained from both satellite and in situ
gauge measurements. From the analyses, a statistically significant
relationship between the time series for cholera in Kolkata, India, and
CHL and rainfall anomalies was determined. A statistically significant
one month lag was observed between CHL anomaly and number of
cholera cases in Matlab, Bangladesh. From the results of the study, it
is concluded that ocean and climate patterns are useful predictors of
cholera epidemics, with the dynamics of endemic cholera being
related to climate and/or changes in the aquatic ecosystem. When the
ecology of V. cholerae is considered in predictive models, a robust
early warning system for cholera in endemic regions of the world can
be developed for public health planning and decision making.

ecology � epidemiology � microbiology � remote sensing

V ibrio cholerae, a serious pathogen for humans, has been the
subject of intense study for more than a century, yet the

discovery that this bacterium is a natural inhabitant of riverine,
estuarine, and coastal waters throughout both temperate and
tropical regions of the world was made only relatively recently
(1). Before the late 1970s, transmission of cholera was believed
to occur exclusively by person-to-person contact, with epidemics
initiated by contaminated water and food. In 1855, Sir John
Snow hypothesized that devastating epidemics of cholera are
caused by contaminated drinking water (2). In his time, the germ
theory of disease had not been proven nor accepted and,
obviously, it was not understood that the epidemic strain of V.
cholerae was a bacterium naturally occurring in the aquatic
environment (1, 3).

It is now recognized that V. cholerae is a component of coastal
and estuarine microbial ecosystems, with the copepod species of
zooplankton that comprise the aquatic fauna of rivers, bays,
estuaries and the open ocean serving as host for the bacterium
(4–7). V. cholerae can be found attached to the carapace and in
the gut of copepods in large numbers, the copepod essentially
serving as a vector for this human pathogen (1, 8, 9). A single
copepod, for example, can contain as many as 103–105 V. cholerae

cells (10). Because a concentration of 109 ml�1 V. cholerae
comprises an infective dose, ingestion of untreated water con-
taining a relatively small number of copepods carrying V.
cholerae can initiate the disease (11). Therefore, conditions
favorable for multiplication of copepods and related chitinous
zooplankton species for which V. cholerae is commensal or
symbiotic will result in an increase in the number of V. cholerae.
The importance of copepods in cholera transmission was dem-
onstrated in a study showing that the number of cholera cases in
Bangladeshi villages was significantly reduced when a simple
filtration method that effectively removed the plankton and
particulate matter was used to treat drinking water (12, 13).

Another advance in understanding cholera epidemics was
made with the discovery that the epidemics are significantly
influenced by climatic factors (1, 13–17). Several environmental
drivers of the seasonal cycle of cholera in India and Bangladesh
where cholera is endemic have been identified (1, 18). Ocean
surveillance by satellite remote sensing was used to monitor
changes in sea surface temperature (SST) and sea surface height
(SSH) in the Bay of Bengal. The pattern of changes in these
parameters were shown to be related to V. cholerae dynamics in
coastal, estuarine, and riverine waters of the Bay of Bengal and
to the cholera epidemics caused by these bacteria in that region
of the world (14). That is, the distinct seasonal pattern of cholera,
in countries where the disease is endemic has been correlated
with environmental factors and climate that drive both copepod
population dynamics and the seasonal peaks in abundance of V.
cholerae in the aquatic ecosystem of the Bay of Bengal. Given this
relationship, it is concluded that the variables related to copepod
population dynamics can serve as a proxy for the estimation of
V. cholerae abundance in the environment.

Lobitz et al. (14) were the first to explore the now well
recognized relationship between SST, SSH and cholera inci-
dence using remote sensing, describing changes in coastal eco-
systems significantly related to the annual cyclic pattern of
cholera epidemics. Significant progress has since been made in

Author contributions: G.C.d.M., R.M., A.J.B., and R.R.C. designed research; G.C.d.M., R.M.,
M.R.P.S., and C.W.B. performed research; G.C.d.M., R.M., M.R.P.S., A.N., C.W.B., M.Y.,
G.B.N., A.I.G., C.F.L., J.C., B.M., K.R., M.K.B., A.H., R.B.S., and R.R.C. analyzed data; and
G.C.d.M., R.M., M.R.P.S., A.N., C.W.B., A.J.B., G.B.N., A.I.G., C.F.L., J.C., K.R., A.H., R.B.S., and
R.R.C. wrote the paper.

The authors declare no conflict of interest.

1To whom correspondence should be addressed at: Institute for Advanced Computer
Studies, Biomolecular Sciences Building 296, Room 3103, University of Maryland, College
Park, MD 20742. E-mail: rcolwell@umiacs.umd.edu.

This article contains supporting information online at www.pnas.org/cgi/content/full/
0809654105/DCSupplemental.

© 2008 by The National Academy of Sciences of the USA

17676–17681 � PNAS � November 18, 2008 � vol. 105 � no. 46 www.pnas.org�cgi�doi�10.1073�pnas.0809654105

http://www.pnas.org/cgi/content/full/0809654105/DCSupplemental
http://www.pnas.org/cgi/content/full/0809654105/DCSupplemental


modeling interannual variability of cholera epidemics in
Bangladesh, employing mathematical models to reproduce the
seasonal cycle of cholera (19, 20). In one such study, a
significant correlation was found between selected environ-
mental variables, namely precipitation, SST, and CHL, with
cholera cases in a single epidemic during 2000–2001 in
KwaZulu-Natal, South Africa (21). In that analysis, SST and
CHL data were estimated from satellite sensor measurements,
and a conclusive finding was that robust predictive associations
require multiyear analyses (21).

Here, we report on the association between selected environ-
mental variables and confirmed cholera cases in two separate
human populations resident in Kolkata, India, and Matlab,
Bangladesh, in the northern Bay of Bengal, a marginal sea of the
Indian Ocean (Fig. 1). Different satellite-derived data (CHL and
SST) for the nearest coastal environment for each of the two
geographical areas, and local rainfall during a nine year period
(Fig. 2), September 1997–December 2006, for which all three
environmental datasets were available, were analyzed. To de-
termine which environmental signatures were associated with
cholera epidemics in Kolkata and in Matlab, and to demonstrate
the capacity to predict cholera, a historical approach was taken
in modeling the relationship between the dynamics of the cholera
epidemics and related environmental factors.

Results
For Kolkata, a positive relationship was observed between the
number of cholera cases and CHL anomaly (CHLano) for both
the single grid-point and the box-averaged values (see Materials
and Methods and Fig. 1 for details). A 1 mg/m3 increase in
monthly mean CHLano for the single grid-point value was

associated with an increase of 32.5% [95% confidence interval
(CI) � 8.3%–62.0%] in the number of cholera cases, after
controlling for the annual cycle and the ‘‘persistence’’ effect
arising from density dependence in cholera transmission.

The relationship described above for CHLano was also ob-
served for the single grid-point value of rainfall anomaly
(PREano) and the number of cholera cases in Kolkata. A 1
mm/day increase in monthly mean PREano was associated with
an increase of 6.5% [95% CI � 1.6%–11.7%] in the number of
cholera cases, after controlling for the annual cycle and the
‘‘persistence’’ effect.

The final model for Kolkata is

y �� � Po(�,�2)

log��� � � � �0 � �1IMAM � �2IJJA � �3ISON

� �4log�1 � cholt�1� � �5CHLt � �6Raint [1]

where coefficients are detailed in Table 1. Observed cholera case
time-series and the prediction of both the fitted model and the
fitted cross-validation model are displayed in Fig. 3A. The
comparison of observed cholera cases against the prediction of
the fitted models (Fig. 3B) shows that the cross-validation model
tends to underestimate more of the highest values of cholera
cases than the fitted model. The pseudo R2 value for the fitted
model is equal to 88.17%.

In contrast to CHLano, the PREano five degree grid box
average was not retained in the model, suggesting that the major
effects of precipitation occur locally rather than at a large scale,
reflecting localized precipitation, even in a large scale monsoon
system (22). SST was not retained in the model, either with the
single grid point anomaly or with the five degree grid box
average. It could be because of collinearity between the vari-
ables, most of the variance likely being already explained by
CHLano and PREano.

For Matlab, a positive relationship was observed between
number of cholera cases and the single grid-point data for
CHLano, with a one month lag. A 1 mg/m3 increase in the monthly
mean CHLano was related to the number of cholera cases
increasing by 31.4% [95% CI � 13.0%–52.7%], after controlling
for the annual cycle and the ‘‘persistence’’ arising from density
dependence in cholera transmission. When the model was run
using a five degree box for the averaged data, a positive

Fig. 1. Map showing the region from which the environmental and epide-
miological data were obtained. Locations for extraction of the monthly mean
values for CHL and SST are indicated by (i) one degree resolution squares,
orange for Kolkata (centered in 20.5N/88.5E) and white for Matlab (centered
in 20.5N/90.5E), and for (ii) the five degree box average for both sites by the
black solid line square (centered in 18.5N/89.5E). Locations where monthly
mean rainfall values were obtained are indicated as follows: (i) two and half
degree resolution points for Kolkata are delimited by a red dashed line square
(centered in 23.75N/88.75E) and for Matlab by a red solid line square (centered
in 23.75N/91.25E), and (ii) for the five degree box average for Kolkata by the
yellow dashed line square (centered in 22.5N/87.5E) and for Matlab by the
black dashed square (centered in 22.5N/90.0E). Background image represents
the ground elevation coded from dark green, the lowest value, to white, the
highest [The Global Land One-kilometer Base Elevation (GLOBE) NOAA,
NGDC; (http://www.ngdc.noaa.gov/mgg/topo/globe.html); (48)].

Fig. 2. Epidemiological and environmental dynamics for (A) Kolkata, India,
and (B) Matlab, Bangladesh. The cholera cases, the CHL, the SST and the
rainfall are shown in black, green, red and blue lines, respectively.
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relationship was observed between CHLano and the number of
cholera cases. Upwelling occurs mainly along the coast of the Bay
of Bengal, thus the five degree box yielded a significantly
weakened coastal upwelling signal. As for Kolkata, SST was not
retained in the model presumably because of the same reasons.

The final model for Matlab is

y �� � Po(�,�2)

log(�) � � � �0��1IMAM � �2IJJA � �3ISON

� �4log�1 � cholt�1� � �5CHLt�1 [2]

where coefficients are detailed in Table 1. Observed cholera case
time series and the prediction of both the fitted model, and the
fitted cross-validation model are displayed in Fig. 3C. The
contrast of observed cholera cases against the prediction of the
fitted models (Fig. 3D) shows that the cross-validation model
tends to underestimate more of the peak cholera case values than
the fitted model, with both models overestimating the low
number of cholera cases. The pseudo R2 value for the fitted
model is equal to 71.46%.

Discussion
Environmental factors were found to be statistically significant
in two different geographical locations of the Indian continent
in directly influencing the dynamics of cholera epidemics. A
relationship between the short time lag (one month), coincident
environmental conditions, and cholera epidemics was observed.
Interestingly, despite the geographical proximity of Kolkata and
Matlab, the effect of the environmental variables examined in
this study was clearly different. These regional differences
strongly indicate an important effect of the local environment
and local zooplankton populations on the dynamics of cholera
epidemics.

Indeed for Kolkata, higher values of CHLano reflected the
more intense algal blooms than normal that occurred and led to
larger zooplankton populations that were comprised mainly of
crustacean copepods, a natural aquatic host for V. cholerae (1, 8,
9). From the analyses of the Dhaka, Bangladesh data, it was
concluded that the tidal intrusion of coastal water carrying
plankton into inland water could initiate increased human
contact with the cholera vibrio (14), because water used for daily
hygiene, personal consumption, and religious rites (e.g., ablu-

Table 1. Summary of the model obtained for Kolkata, India, and Matlab, Bangladesh

Model parameters

Intercept IMAM* IJJA* ISON* Log(cholt-1)* CHLt Raint CHLt-1 Df

Kolkata 103
Coefficient �0.264 1.597 1.524 1.476 0.578 0.281 0.063
P value 0.39 1.10�7 4.10�7 1.10�6 9.10�12 7.10�3 9.10�3

SE 0.31 0.28 0.28 0.29 0.07 0.10 0.02
Matlab 103
Coefficient 0.676 0.674 0.168 0.659 0.637 0.273
P value 2.10�2 2.10�3 0.44 9.10�4 2.10�14 5.10�4

SE 0.29 0.22 0.22 0.19 0.07 0.08

*As described in Materials and Methods, this parameter was maintained in the model without considering the P value.

Fig. 3. Observed epidemiological data and prediction of fitted models. For Kolkata, (A) temporal dynamics of observed cholera cases, fitted model and
cross-validation model shown in black, red and blue, respectively. (B) Scatterplot of observed cholera cases against (i) predicted cholera cases by fitted model
in red circles, and (ii) predicted cholera cases by cross-validation model in blue circles. Black line represents perfect agreement between predicted and observed
cases. For Matlab, C same as A. D same as B.
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tions) in rural areas of Bangladesh and India is taken directly
from local rivers or ponds essentially untreated (13, 23, 24). The
relationship observed for PREano similarly reflects the effect of
unusually heavy precipitation influencing cholera transmission
by feeding surface runoff into streams and rivers flooding the
water supply (15, 16). It also can have a direct role in cholera
dynamics by increasing nutrient runoff, inducing river enrich-
ment responsible for local algal blooms (25, 26). During intense
rainfall events, the tidal intrusion of coastal water carrying
plankton into inland water inf luencing cholera transmission
may be minimized by the increase of the river f lows. We
concluded that both factors are inf luencing cholera transmis-
sion independently.

For Matlab, the relationship between number of cholera cases
and CHLano was as expected. Matlab comprises a densely
populated cluster of villages in a flat, low altitude region
representing a dense, natural hydrological system intersected by
the Dhanagona River and having a strong tidal influence. The
relative proximity of Matlab to the coastal region of the Bay of
Bengal can explain both the significant relationship of CHLano
with cholera and the one month lag for Matlab, because Matlab
lies further inland than Kolkata.

It is evident that each location requires a different model
because of local or regional specificity. While CHL was deter-
mined to be important in influencing the dynamics of cholera
epidemics in both locations within the same month or with one
month lag, a longer lead time was found to be necessary for the
environmental factors to be useful in predicting epidemics of
cholera and give health workers time to formulate plans, dis-
seminate warnings and recommendations to the public. Never-
theless, even a short lead time, at the submonthly time scale, can
provide sufficient warning so that precautionary measures can
be taken to save lives. In this context, the robust results obtained
in this study indicate that increasing the lead time for prediction
in dynamic or statistical regional climate and/or ocean forecast
models, will provide a valuable tool for public health purposes.
A functional model for an early warning system will require finer
temporal resolution of acquired data, particularly for Kolkata
where the relationship appears to be submonthly although most
likely a data-limitation issue at present. For practical applica-
tions of these models, environmental as well as epidemiological
data need to be collected and compiled expediently to provide
useful and reliable predictions of the onset, epidemics, and
trends of cholera based on environmental variability. The
environmental variables related to cholera dynamics in this
study, rainfall and CHL, as well as predictable phenomena,
such as the Madden-Julian Oscillation, El Niño-Southern
Oscillation, and the more recently proposed Indian Ocean
Dipole/Zonal mode (27–31), clearly point to the potential for
prediction of cholera with a significant lead time. A simple
statistical model presented here that incorporates only local
environmental conditions, nevertheless, yielded significant
statistical association between cholera and selected environ-
mental factors.

Obviously, not all of the variance in the number of cholera
cases in each region can be explained by this method alone,
because cholera epidemics involve a complex and critical inter-
play of intrinsic dynamics with extrinsic drivers (20). For exam-
ple, cholera is no longer a disease threat for developed countries,
including the United States, even though the presence of V.
cholerae O1 in the waters of the Chesapeake Bay and coastal
states of the Gulf of Mexico has long been known (32–34).
Because good sanitation is practiced and safe drinking water is
available to the populations of the region, cholera epidemics no
longer occur. However, V. cholerae does remain as a naturally
occurring inhabitant year round in those aquatic environments,
with the same spring and fall peaks in number of the cholera
bacteria, and a similar relationship with its copepod host (32, 35).

The results of this study provide a foundation on which to build
a predictive capacity for cholera epidemics, hence, an early
warning system for enhancing public health measures, especially
for developing countries and areas of the world undergoing
social disruption or climate change. Better spatial resolutions of
the satellite datasets as well as finer temporal resolution, i.e.,
ground based network stations, will improve our ability to
predict cholera outbreaks. It will also allow a continued envi-
ronmental data validation as well as alleviate the problem of
missing satellite data because of clouds or other potential
technical issues. Selected environmental factors serve effectively
as indicators for cholera, but an integrative, mechanistic and
interdisciplinary model combining satellite and ground obser-
vations will be required. The Aquarius (http://aquarius.gsfc.na-
sa.gov/index.php) satellite mission, designed to measure global
sea surface salinity, to be launched in 2009, will provide addi-
tional useful information because salinity has a critical influence
on the ecology of V. cholerae (15, 36–38).

Subseasonal-to-interannual time-scale operational forecast
systems that employ statistical forecasting tools and combine
local ecosystem, coastal, and ocean data, including SST, SSH,
CHL, and zooplankton concentration, from mechanistic hydro-
dynamic and ecosystem modeling to analysis of climate param-
eters from coupled climate forecast models (rainfall, river
runoff, air temperature, and humidity) may prove more useful
for Kolkata, where time-resolved environmental parameters to
obtain submonthly lead times are needed, compared with Ban-
gladesh, where the environmental lead time appears to be
longer.

A fully integrated model for cholera prediction that takes into
account the demographic components of human populations
exposed to endemic cholera and the complexity of cholera
epidemiology, as well as climate, and the environment, ecology
and the genomics of V. cholerae will continue to be a focus of our
research. Interannual variability of cholera (15, 20, 39, 40) and
the strong El Niño that occurred in 1998 were found to be
associated with the largest number of cholera cases for both
Kolkata and Matlab and offer challenging examples of cholera
and climate interaction.

Materials and Methods
Data for Matlab, Bangladesh, and Kolkata, India, included in the analyses
correspond to the monthly number of admitted patients for cholera symp-
toms individually confirmed by culture. The clinical specimens from which V.
cholerae was isolated were from patients admitted either to the International
Center for Diarrhoeal Diseases Research, Bangladesh (ICCDR, B) or to the
Infectious Diseases Hospital of the National Institute of Cholera and Enteric
Diseases (NICED) in Kolkata, India. Methods used for isolation and culture of
V. cholerae have been reported elsewhere (41, 42). Additional computations
detailed in supporting information (SI) Text showed no differences in using
the monthly accumulation of cholera cases as a response variable in models
instead of incidence.

Rainfall data used in the analyses were taken from the monthly merged
satellite/gauge estimates of the Global Precipitation Climatology Project
(GPCP) Version 2 (43). These data provide merged ocean/land estimates.
Source of the monthly SSTs was Reynolds and Smith (44), generated from the
NOAA Optimally Interpolated (v2) product provided by the National Climatic
Data Center (www.ncdc.noaa.gov). CHL estimates were derived from the
Sea-viewing Wide Field of View (SeaWiFS) sensor launched in 1997 (45), and
provided by the NASA Goddard Distributed Active Archive Center (http://
daac.gsfc.nasa.gov). CHL data are available by month from September, 1997
to the present. The spatial resolution of CHL and SST was a one degree grid and
that for the rainfall data comprised a two-and-a-half degree grid. CHL and SST
data were extracted from the measurements taken off the coast of the Bay of
Bengal, whereas rainfall data (over land and ocean) were extracted coincident
with the study locations (see Fig. 1). To evaluate potential differences at local
or regional scale in the relationships between cholera cases and environmen-
tal variables, we also computed a five degree box-average for the environ-
mental variables. For CHL and SST, it corresponds to the mean computed over
a five by five square of data at one degree resolution, i.e., a mean of twenty
five pixels (Fig. 1). For PRECIP, it corresponds to a parameter mean computed
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over a five by five square of data at two-and-half degree grid resolution, i.e.,
a mean of four pixels (Fig. 1). Because the three environmental datasets show
a strong seasonal pattern (Fig. S1), anomalies were computed to remove the
effect of the annual cycle, which can result in spurious relationships between
cotrending variables. The anomalies were constructed by calculating the
climatological mean for each month and subtracting these means from each
corresponding month from the original data.

Environmental factors for the months preceding the cholera outbreaks
proved to be important. That is, for CHL, phytoplankton biomass increases
followed by an increase in the zooplankton population, the latter harboring
V. cholerae, both associated with an increase in SST. This process, however, is
not instantaneous and a lag time of one to two months was used for an
increase in the V. cholerae population after the increase in SST and CHL had
occurred. A time lag after precipitation is mechanistically justified because
precipitation during months preceding a cholera outbreak feeds streams and
rivers with surface runoff, thereby playing its unique role in the initiation of
cholera outbreaks, especially when flooding occurs (15, 16). The chain of these
climate events and their lead times provide the basis for prediction of cholera
outbreaks, and were exploited to demonstrate feasibility of prediction, hence
an early warning system.

There is a mechanistic basis for expecting up to two months lag for CHL, SST,
and rainfall peaks in these drivers of cholera. A mechanistic approach allows
translation of an empirical predictive understanding into quantitative predic-
tion for cholera. To exploit the process empirically, variables included in the
model were taken from both the coincident month and a one-month lag (t-1).
CHL data also included a two-month lag (t-2). Indicator variables for quarterly
means of cholera cases representing the annual cycle were included in the
model as well as log number of cholera cases for the previous month. The
latter is analogous to the differencing technique commonly used in an ordi-
nary least squares linear regression (adapted for generalized linear models on
a log scale), removing the ‘‘persistence’’ effect arising from density-
dependence in cholera transmission (19). Both variables were included as fixed
parameters in the models to remove residual autocorrelation.

A generalized linear model (GLM) with a Poisson distribution and a log link
was used to model the data (46). As is common with such data, strong
over-dispersion was apparent and was accommodated by using a quasi-
Poisson GLM fitted using the R software package. This model estimates the
degree of overdispersion and inflates standard errors accordingly. For the
quasi-Poisson model, the constraint of equal mean and variance is relaxed so
that the variance of the response is related to the mean � by

Var�Y� � �2� [3]

where �2 is the (constant) dispersion parameter. Our model for counts in the
presence of overdispersion can thus be written as

y �� � Po(�,�2)

log(�) � � � �0 � �1IMAM � �2IJJA � �3ISON

� �4log(1 � cholt�1) � �5CHLt

� �6CHLt�1 � �7CHLt�2 � �8SSTt

� �9SSTt�1 � �10Raint � �11Raint�1 , [4]

where y represents the observed counts, � is the fitted model, Po represents
the Poisson distribution, the �j are the model parameters, and IMAM, IJJA, and
ISON represent the quarterly mean of cholera case index for March–April–May,
June–July–August, and September–October–November, respectively and
were used to remove any remaining annual cycle. Hypotheses of environmen-
tal factors driving cholera dynamics in the two locations was tested by using
a 5% rejection range for significant variables. To evaluate the models com-
puted on the whole dataset, cross-validations predictions were also made
from the model by predicting cholera cases for each year using the final model
structure, i.e., with only significant parameters, but estimating coefficients on
the data set without data for the year under consideration. Then we assem-
bled each predicted year to construct the cross-validation predictions for the
whole period. The pseudo R2 proposed by (47) was used as a model diagnostic
estimate adapted for quasi-Poisson model. Like the estimate of R2 commonly
used for ordinary least squares linear regression, this statistical can be inter-
preted as the percentage of variability explained by the model.

SI. Further information is available in SI Text and Fig. S2.
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